Rhesus TRIM5α Disrupts the HIV-1 Capsid at the Inter­Hexamer Interfaces

نویسندگان

  • Gongpu Zhao
  • Danxia Ke
  • Thomas Vu
  • Jinwoo Ahn
  • Vaibhav B. Shah
  • Ruifeng Yang
  • Christopher Aiken
  • Lisa M. Charlton
  • Angela M. Gronenborn
  • Peijun Zhang
چکیده

TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5α(rh)) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5α(rh) containing coiled-coil and SPRY domains (CC-SPRY(rh)). Concentration-dependent binding of CC-SPRY(rh) to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRY(rh), but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5α(rh) on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Three-Fold Axis of the HIV-1 Capsid Lattice Is the Species-Specific Binding Interface for TRIM5α

Rhesus TRIM5α (rhTRIM5α) potently restricts replication of human immunodeficiency virus type 1 (HIV-1). Restriction is mediated through direct binding of the C-terminal B30.2 domain of TRIM5α to the assembled HIV-1 capsid core. This host-pathogen interaction involves multiple capsid molecules within the hexagonal HIV-1 capsid lattice. However, the molecular details of this interaction and the p...

متن کامل

CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5α.

After virus fusion with a target cell, the viral core is released into the host cell cytoplasm and undergoes a controlled disassembly process, termed uncoating, before or as reverse transcription takes place. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in rhesus macaque cells by targeting the viral capsid and inducing premature uncoating. The molecu...

متن کامل

Virus-specific effects of TRIM5α(rh) RING domain functions on restriction of retroviruses.

The tripartite motif protein TRIM5α restricts particular retrovirus infections by binding to the incoming capsid and inhibiting the early stage of virus infection. The TRIM5α RING domain exhibits E3 ubiquitin ligase activity and assists the higher-order association of TRIM5α dimers, which promotes capsid binding. We characterized a panel of RING domain mutants of the rhesus monkey TRIM5α (TRIM5...

متن کامل

Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module.

Tripartite motif protein TRIM5α blocks retroviral replication after cell entry, and species-specific differences in its activity are determined by sequence variations within the C-terminal B30.2/PRYSPRY domain. Here we report a high-resolution structure of a TRIM5α PRYSPRY domain, the PRYSPRY of the rhesus monkey TRIM5α that potently restricts HIV infection, and identify features involved in it...

متن کامل

Viral attachment induces rapid recruitment of an innate immune sensor (TRIM5α) to the plasma membrane.

TRIM5α (tripartite motif 5α) acts as a pattern recognition receptor specific for the retrovirus capsid lattice and blocks infection by HIV-1 immediately after entry. However, the precise mechanisms underlying this rapid recognition of viral components remain elusive. Here, we analyzed the influence of viral exposure on TRIM5α. Total internal reflection fluorescence microscopy and lipid flotatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011